乐橙在线娱乐为电机启动器和加热系统设计一个

原创 2020-05-03 21:10  阅读

  和机械继电器并联在一起构成的开关元件,兼具机械继电器的低压降与硅器件的可靠性,常用于电器设备的电机启动器或加热器控制功能。欧盟RoHS指令可能会影响到机械继电器的工作可靠性,因此,混合式继电器日益受到市场的青睐。

  正确控制混合式继电器,看起来容易,做起来难。例如,在机械开关和半导体开关相互转换过程中可能会产生尖峰电压,引起电磁噪声辐射。为了有效降低尖峰电压,本文将探讨几个简易的控制电路设计技巧。

  当选择交流开关时,固态继电器和机械继电器各有优缺点。半导体固态继电器响应速度快,导通无电压反弹,关断无电弧,电压反弹或电弧将会造成电磁干扰(EMI)辐射,缩短继电器的使用寿命。机械继电器的主要优点是导通损耗小,2 A RMS以上应用无需使用散热器;驱动线圈与电源接线端子之间隔离,无需通过光耦合器驱动可控硅整流管(SCR)或双向可控硅。

  第三种继电器是将固态继电器与机械继电器并联,形成一个兼备这两种技术优势的混合式继电器(简称HR)。图1所示是电机启动器内的混合式继电器拓扑,这个三相电机启动器只需要两个混合式继电器,如果两个继电器都是关断状态,只要电机中性线没有连接,电机就会保持关断状态。如果负载连接了中性线上串联一个混合式继电器。

  图 1: 左)基于混合式继电器的电机启动器;右)继电器/双向可控硅控制序列

  - 1.双向可控硅(在大电流应用中,使用两个反极性并联的可控硅整流管)导通,乐橙在线娱乐,负载零电压接通。

  - 2.在一个或数个市电周期后,继电器接通。继电器的接通电压极低(通常是1-2V,恰好是双向可控硅的通态压降)。

  - 3.在施加继电器线圈电流一到两个周期后,撤去双向可控硅栅电流,为继电器在双向可控硅关断前吸合提供充足的时间。因此,稳态负载电流只流经机械继电器。

  - 1.双向可控硅导通。因为继电器还在接通状态,所以负载电流主要流经机械继电器。

  - 2. 几毫秒后继电器关闭。像继电器接通一样,关闭电压同样极低。因此,电弧时间被缩短。

  - 3.在撤去继电器线圈电流一个到两个周期后,再撤去双向可控硅栅电流,双向可控硅关断。混合式继电器在零电流时关断。

  继电器在近零电压时关闭,可提高继电器使用寿命十倍。如果是直流电流或电压关断,这个数字还能再高些。

  更重要地是,因为欧盟RoHS指令(2002/95/EC)关于豁免镉限制使用的规定将于2016年到期,触点防锈和触点焊接所用的银-氧化镉合金将会被银氧化锌或银氧化锡替代。除非使用面积更大的触点,否则这些触点的使用寿命将会缩短。

  零压导通技术还准许使用容性负载来降低涌流,容性负载包括灯具电子镇流器和内置补偿电容或逆变器的荧光灯具。这项技术有助于延长电容器的使用寿命,避免市电电压不稳问题。此外,固态继电器技术支持渐进式软启动或软停止。电机转速平稳升降可降低机械系统磨损,防止泵、风扇、电动工具和压缩机损坏。例如,管道系统中的水击现象就会消失,V型传送带打滑现象不会再出现。

  这种混合式继电器常用于4-15 kW的设备,最高应用功率可达250kW。

  此外,混合式继电器还可用于加热系统。脉冲控制器通常被用于设定加热功率或室温/水温。脉冲或周期跳跃模式控制方法是接通负载 ”N”个周期,关闭负载“K”个周期。像脉宽调制控制技术中的占空比一样,“N/K”周期比用于设定加热功率,虽然控制频率小于25-30 Hz,但是,对于加热系统的时间常量来说,这个频率已经足够快了。

  驱动双向可控硅有很多控制电路可以考虑,前提是隔离电路。图1中的两个双向可控硅的参考电压不同,所以隔离控制电路应该使用光耦双向可控硅或脉冲变压器。两个电路的工作方式不同,产生的EMI噪声也不相同。

  图 2 所示是一个光耦双向可控硅驱动电路。当光耦双向可控硅LED激活时(即当微控制器I/O引脚置于高边时),通过R1施加双向可控硅栅极电流。电阻R2连接在双向可控硅G与A1端子之间,用于分流瞬变电压在光耦双向可控硅寄生电容上产生的电流。通常使用50-100欧姆的电阻器。

  该电路的工作原理是在每个电流过零点(如图2所示)上产生峰值电压,即便光耦双向可控硅内置电压过零电路也是如此。

  事实上,在光耦双向可控硅电路内,双向可控硅的 A1和 A2端子之间必须有电压,才能向栅极上施加电流。双向可控硅导通时的电压降接近1V或1.5 V,这个压降值不足以向栅极施加电流,因为该压降小于光耦双向可控硅压降与G-A1结压降之和(两者的压降都高于1V)。因此,每当负载电流过零点时,没有电流施加到栅极,双向可控硅关断。

  当双向可控硅关断时,线路电压施加在双向可控硅的端子上,该电压必须将VTPeak 电压提高到足够高,才能使施加的栅极电流达到双向可控硅IGT电流值。

  图2实验使用了一个T2550-12G双向可控硅(25 A,1200 V,50 mA IGT),最高峰值电压等于7.5 V(在负电压转换过程中)。假设 G-A1结和光耦双向可控硅的典型压降分别为0.8 V和1.1 V,这个实验使用一个200欧姆电阻器R1取得28 mA栅极电流。对于我们所用样品,这个电流是第三象限(负电压VT 和负栅极电流)导通所需的电流IGT。

  如果样品的IGT电流接近最大指定值(50 mA),VTPeak 电压将会更高。因为IGT 值随着温度降低而升高,如果双向可控硅的结温较低, VTPeak 电压将会更高。

  因为VTPeak电压的频率是线路电压频率的两倍(若市电50 Hz ,则该电压频率是100 Hz),其EMI噪声辐射超出了EN 55014-1电器设备和电动工具标准规定的辐射限制。还应指出地是,这个噪声只在双向可控硅导通时才会出现。只要绕过继电器,噪声就会消失。EN 55014-1断续干扰限制规定与反复率(或“click”)有关,即混合式继电器的工作频率和干扰时长。

  为避免这些电压峰值,在光耦双向可控硅与脉冲变压器之间优先选择脉冲变压器。在变压器二次侧增加一个整流全桥和一个电容器,用于修平整流电压,为驱动双向可控硅栅极提供直流电流。因此,在电流过零点不再有尖峰电压,不过,当导通状态从机电继电器转换到双向可控硅时,还会发生电磁干扰。只有在混合式继电器关闭时才会发生导通转换。图 3.a描述了这个阶段发生的尖峰电压;时间恰好是在双向可控硅导通时,整个负载电流从继电器突然切换到双向可控硅。图 3.b图所示是双向可控硅上电流上升过程的放大图。dIT/t速率接近8 A/s。双向可控硅被触发时还没有导通(因为全部电流还是流经机械继电器),当电流开始流经可控硅时,硅衬底具有很高的电阻。高电阻将会产生高峰值电压,在图3使用T2550-12G进行的实验中,该峰压为11.6 V。

  在双向可控硅开始导通后,其硅结构的正反面P-N结将向硅衬底注入少数载流子,这会降低衬底的电阻,将通态电压降至约1V-1.5 V。

  这种现象与PIN二极管上的峰值压降现象相同,导通时电流上升速率高,所以PIN二极管数据手册给出VFP 峰压,该参数大小与适用的dI/dt参数有关,如果是高频开关应用,该参数将会影响能效。在混合式继电器中,VFP 电压只在继电器关闭时才会出现,计算功率损耗时无需考虑。

  还应注意地是,既然VFP 现象是因注入少数载流子以控制衬底电阻所用时间造成的,1200V的双向可控硅的VFP高于800V解决方案的VFP,例如,T2550-8。乐橙在线娱乐因此,必须精心挑选器件所能承受的VFP电压,因为过高的余量将会导致双向可控硅导通时峰压较高。

  虽然峰压实际测量值高于在光耦双向可控硅电路上测量到的峰压,但是,因为这种现象只是在混合式继电器关闭时每周期出现一次,且持续时间只有几毫秒,所以,EMI电磁干扰还是降低了。尽管脉冲变压器使用昂贵的铁氧磁芯,体积大,成本高,考虑到这个原因,脉冲变压器驱动电路依然是首选。

  为减少混合式继电器上的VFP 现象,在控制电路上可以考虑几个简单的设计技巧。

  效果最好的办法是控制继电器在负电流导通期间关闭。事实上,负电流时VFP 现象较低。图4所示是在与图3 b 相同的测试条件下测量到的VFP电压,唯一区别是负电流。不难看出,VFP 电压降低二分之一,从正电流的11.6 V降至现在的5.5 V。负电流时VFP 降低是因为硅结构在第三象限比在第二象限容易导通,(A2-A1正电压和栅极负电流)。

  第二个技巧是提高双向可控硅栅极电流。例如,当施加100 mA栅极电流,而不是指定的IGT 电流(50 mA)时,T2550-12G双向可控硅VFP电压降低二分之一或三分之一,特别是正开关电流的情况。

  另一个降低VFP 电压的解决办法是在电流过零点附近释放继电器。事实上,限制开关电流也会限制双向可控硅导通时施加的dIT/dt电流上升速率。当然,实现这样一个解决方案,必须选择关断时间仅几毫秒的机械继电器。

  给双向可控硅串联的一个电感器,也可以降低dIT/dt上升速率。这里不建议机械继电器与双向可控硅之间采用短PCB迹线设计。

  混合式继电器的普及率不断提高,使用寿命长,尺寸紧凑,正好符合开关柜的需求。本文解释了尖峰电压产生的原因,并讨论了降低尖峰电压的解决方法,例如,在负电流导通时关断继电器,在栅极施加更大的直流电流,给双向可控硅串联一个电感器。

版权声明:本文为原创文章,版权归 乐橙在线娱乐 所有,欢迎分享本文,转载请保留出处!
上一篇:乐橙在线娱乐u型加热管尺寸是多少?
下一篇:乐橙在线娱乐380v加热管实物接线图